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Abstract
Developer tooling is crucial for developer productivity. Lan-
guage Server Protocol, in particular, allow language features
to be communicated to editors without having to rely on
hacky editor magic. However, current implementations of
the protocol do not adequately support the meteoric rise in
demand for code completion via LLMs. LLMs are prone to
hallucination, and existing methods such as exhaustive re-
trieval and RAG are limited by token size and inconsistency.
Approaching this with a language semantics-based retrieval
can have benefits over unstructured approaches, but LSP
currently do not expose an interface for static retrieval. We
propose a conservative addendum to the Language Server
Protocol, ChatLSP, to address this issue.
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1 Introduction and Background
One of the biggest advancements in the tooling ecosystem is
the Language Server Protocol [8], which provides a unified
interface for linking language and editor features. Recently,
we’ve seen an explosion at the juncture of editor tooling and
AI, with GitHub Copilot [3] leading the charge, promising
to help developers. However, these AI tools are also prone
to hallucination, suggesting statically incorrect code or stati-
cally correct code that exhibits runtime errors. Ameliorating
these negative effects can be done by feeding the LLM more
information about the codebase. Because costs increase with
token count [2, 6], methods such as RAG [4] are commonly
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used. This is not ideal, though, as it only grabs seemingly rel-
evant tokens based on imperfect heuristics. Treating code as
more than mere tokens by using static retrieval cleanly links
the completion site to type and value definitions elsewhere
in the codebase [1].
We define static retrieval as the action of retrieving ex-

pected types, relevant types, and relevant headers.

type Amount = number;
type Currency = Dollar | Euro;
type Transaction = [Amount, Currency];
const createAmount = (n: number): Amount => {

return Math.round(n * 100) / 100;
}
const withdraw = (n: number): Transaction => ??

Figure 1. Example TypeScript Program

Fig. 1 shows an example TypeScript Program for demon-
stration purposes. The ?? represents a typed hole, an incom-
plete portion of the code. Similar concepts exist in languages
such as Agda [9] or Haskell [10].
An expected type is the type of the hole. In Fig. 1, the

expected type is type withdraw = (n: number) => Transaction.
Relevant types is the list of types that may be related in any
way to the expected type. The expected type can comprise
components that refer to other types, so we retrieve those
references. In Fig. 1, the relevant types are the following:

• type withdraw = (n: number) => Transaction
• type Transaction = [Amount, Currency]
• type Amount = number
• type Currency = Dollar | Euro
• Types that Dollar and Euro refer to.

Relevant headers is the list of functions that we can call to
return the expected type, or parts of it. In Fig. 1, the only
relevant header is createAmount.

Determiningwhat headers are relevant can be done through
two steps: generating a list of target types, and finding head-
ers whose types are consistent with any of the target types.
Criteria for target types are as follows:

• The type of the hole itself.
• If the hole is an arrow type, the return type.
• If the hole is a product type, the component types.
• Compound type definitions (cases where the return
type is a product or a product has an arrow type).
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There are many ways to determine type consistency, as
this depends on the language implementation. One example
would be to use a checker function const checker = (h: HTyp):
TTyp => return h, and check that substituting HTyp for the
header’s type and TTyp for the target’s type does not return
a static error when compiled.

2 Limitations of Modern Developer Tooling
Current implementations of developer tooling such as LSPs
and static analysis tools do not operate at a granular type-
based level capable of the aforementioned static retrieval.

2.1 Limitations of the Language Server Protocol
Language servers are capable of retrieving static information
from a codebase. Particularly, modern language servers often
have the ability to retrieve the expected type of an expres-
sion, the relevant types, and the relevant function headers.
However, the current Language Server Protocol [7] does not
provide an interface to capitalize on this. Because of this,
static retrieval must be done by hacking together different
LSP methods in a recursive algorithm.

• Get the current cursor location.
• Get the enclosing declaration.
• Get the type of the expression inside.
• Step into the expression’s component types, and re-
curse. For example, in Fig. 1, if the expression at hand
is Currency, recurse on Dollar and Euro.

Clients can request one specific method, but cannot request
for a series of methods in a programmatic manner. Such
action would require a custom method that the client can
call once, and the language server to execute the tasks. Our
research showed that type and header extraction is not im-
plemented yet. Given the importance of extracting static
information and the capabilities of language servers, we be-
lieve that this is a missed opportunity.

2.2 Limitations of Other Static Analysis Tools
Another popular static analysis tool is CodeQL [5] by GitHub.
CodeQL first generates a database over a repository, then
gives the developers the ability to write queries on specific
elements, AST nodes, and more. In principle this is the ideal
way to extract information. Code, by definition, is more
than just text and cursor positions - it is semantic data, and
querying for specific data inherently makes sense.
CodeQL, however, is not without its flaws. The database

is created over a snapshot of the codebase, so it does not
incrementally expand with the addition of new code - it must
be re-created every time a new change occurs. Furthermore,
the overhead is non-negligible - creating a database takes
a considerable amount of time, and developers must also
write separate queries in CodeQL’s own domain-specific
language QL. We believe that developers should be able to

do relatively simple things such as static retrieval without
writing complicated queries.

3 Extending the Protocol
An ideal system should have the the following qualities:

• Extract static information, particularly the expected
type, relevant types, and relevant headers.

• Fast, actions should be completed in milliseconds.
• Easy to use, and developers who use an editor should
not have to learn thrid-party tools to reap the benefits
of static retrieval.

• React to future code changes.
Given these limitations, many third-party static analysis

tools are out of question. Language servers are still incredibly
attractive options - they benefit from being extendable and
capable of accomplishing tasks in milliseconds. Therefore,
instead of reinventing the wheel, we decide to propose a
conservative addendum to the Language Server Protocol.
This comprises five new methods.

• textDocument/expectedType
• textDocument/relevantTypes
• textDocument/relevantHeaders
• textDocument/llmCompletion
• textDocument/llmCompletionResolveErrors

textDocument/expectedType returns the expected type of
an incomplete expression.

textDocument/relevantTypes returns a list of strings, each
representing a type definition that may be relevant at a given
cursor location. The returned list contains components that
can be used to build up the expected type.

textDocument/relevantHeaders returns a list of strings, each
representing a function header that we can call to return the
expected type, or part of it, at a given cursor location.

textDocument/llmCompletion works similarly to the previ-
ously existing completion method, but uses LLM to complete
the code, akin to GitHub copilot. The result is immediately
visible in the editor, and users will be able to tab through
different completions.

textDocument/llmCompletionResolveErrors will attempt to
resolve incorrect completions by using error rounds, itera-
tively fixing the generated code by replying with static errors
and prompting for a corrected version.

4 Future Work
We are in the process of creating a Visual Studio Code ex-
tension that uses this extended language server. We hope
to test this with developers and conduct a study on devel-
oper productivity versus current implementations of LSP
and Copilot.
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